Strain-induced skeletal rearrangement of a polycyclic aromatic hydrocarbon on a copper surface

نویسندگان

  • Akitoshi Shiotari
  • Takahiro Nakae
  • Kota Iwata
  • Shigeki Mori
  • Tetsuo Okujima
  • Hidemitsu Uno
  • Hiroshi Sakaguchi
  • Yoshiaki Sugimoto
چکیده

Controlling the structural deformation of organic molecules can drive unique reactions that cannot be induced only by thermal, optical or electrochemical procedures. However, in conventional organic synthesis, including mechanochemical procedures, it is difficult to control skeletal rearrangement in polycyclic aromatic hydrocarbons (PAHs). Here, we demonstrate a reaction scheme for the skeletal rearrangement of PAHs on a metal surface using high-resolution noncontact atomic force microscopy. By a combination of organic synthesis and on-surface cyclodehydrogenation, we produce a well-designed PAH-diazuleno[1,2,3-cd:1',2',3'-fg]pyrene-adsorbed flatly onto Cu(001), in which two azuleno moieties are highly strained by their mutual proximity. This local strain drives the rearrangement of one of the azuleno moieties into a fulvaleno moiety, which has never been reported so far. Our proposed thermally driven, strain-induced synthesis on surfaces will pave the way for the production of a new class of nanocarbon materials that conventional synthetic techniques cannot attain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارزیابی تجزیۀ زیستی آنتراسن به وسیلۀ Gliomastix sp. جداشده از خاک های آلوده پالایشگاه شازند، ایران

In this study, fungal strains with crude oil biodegradation activity were screened from Shazand oil refinery (Arak). Twelve fungal strains were isolated in PDA medium. TPH assay in the presence of 1% of crude oil showed that the ADH-02 was the most capable strain of oil degradation with an efficiency of 75%. FTIR analysis was revealed that 91% of aliphatic hydrocarbons were degraded by ADH-02. ...

متن کامل

Draft Genome Sequence of Advenella kashmirensis Strain W13003, a Polycyclic Aromatic Hydrocarbon-Degrading Bacterium

Advenella kashmirensis strain W13003 is a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium isolated from PAH-contaminated marine sediments. Here, we report the 4.8-Mb draft genome sequence of this strain, which will provide insights into the diversity of A. kashmirensis and the mechanism of PAH degradation in the marine environment.

متن کامل

Biodegradation of Polycyclic Aromatic Hydrocarbons by Aerobic Mixed Bacterial Culture Isolated from Hydrocarbon Polluted Soils

In this study, the degradation potential of five polycyclic aromatic hydrocarbons (PAHs) by aerobic mixed bacterial cultures was investigated. Microorganisms were isolated from hydrocarbon contaminated soils of Shadegan wetland located in southwest of Iran. The degradation experiments were conducted in liquid cultures. PAH or PAHs concentration was 100 mg/L at the beginning of degradation e...

متن کامل

Draft Genome Sequence of Pseudomonas sp. Strain 10-1B, a Polycyclic Aromatic Hydrocarbon Degrader in Contaminated Soil

Pseudomonas sp. strain 10-1B was isolated from artificially polluted soil after selective enrichment. Its draft genome consists of several predicted genes that are involved in the hydroxylation of the aromatic ring, which is the rate-limiting step in the biodegradation of polycyclic aromatic hydrocarbons.

متن کامل

Draft Genome Sequence of Pannonibacter phragmitetus Strain CGMCC9175, a Halotolerant Polycyclic Aromatic Hydrocarbon-Degrading Bacterium

Pannonibacter phragmitetus CGMCC9175 is a halotolerant polycyclic aromatic hydrocarbon (PAH)-degrading bacterium isolated from PAH-contaminated intertidal zone sediment. Here, we report the 5.7-Mb draft genome sequence of this strain, which will provide insights into the diversity of Pannonibacter and the mechanism of PAH degradation in sediments.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017